UNIVERSIDAD POLITÉCNICA DE MADRID

Instituto de Fusion Nuclear

INSTITUTO DE FUSIÓN NUCLEAR

CAMPUS DE EXCELENCIA INTERNACIONAL

INSTITUTOS DE I+D+i

El Instituto de Fusión Nuclear (DENIM) es un Instituto Universitario de Investigación de la Universidad Politécnica de Madrid, con secciones adscritas de la UNED y la ULPGC, creado para llevar a cabo investigación de excelencia al más alto nivel en el campo de la fusión nuclear.

El DENIM funciona de manera oficial desde el año 1981 y desde entonces mantiene el liderazgo en la investigación más avanzada en las áreas de la fusión y la fisión nuclear. Las actividades del DENIM giran en torno a la fusión por confinamiento inercial en sus vertientes de física de la materia a muy alta densidad de energía y a la física asociada a la tecnología para la generación de energía a gran escala. El diseño de la Fuente de Espalación del Pais Vasco y la contribución a la European Spallation Source (ESS) son uno de los objetivos también prioritarios del Instituto. La transmutación de residuos radiactivos, el diseño de reactores avanzados de fisión y estudios de no proliferación nuclear son también objeto de investigación. Asimismo, impulsa y participa en la idea del uso de los neutrones generados por fusión en sistemas fusión-fisión (LIFE) y como fuente de irradiación de materiales.

El Instituto participa en diferentes proyectos con financiación pública competitiva (Plan Nacional, Proyectos CONSOLIDER, diseño de Instalaciones Singulares Nacionales como TECHNOFUSION, Programa Marco Europeo y proyectos ESFRI europeos: HiPER y ELI) y también mantiene numerosos convenios de colaboración directa con centros/instituciones nacionales e internacionales.

Organismos colaboradores con el DENIM

Universidades con secciones adscritas al DENIM

- UNED
- ULPGC

Organismos colaboradores con el DENIM

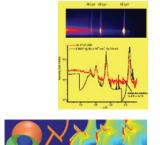
- UCIII
- CIEMAT
- LIPC
- Universidad de Alicante
- F2 I2
- Lawrence Livermore National Laboratory (USA)
- Rutherford Appleton Lab. (UK)
- CEA, LULI, Ecole Polytechnique (Francia)
- Institute Laser Engineering, Osaka Univ. (Japón)
- ITER Cadarache (Francia)
- University of Reno, Berkeley, Wisconsin......(USA)
- FZK Karlsruhe (Alemania)
- University of Thrace (Grecia)
- Lebedev Physical Institute (Rusia)

DENIN

Universidad Politécnica de Madrid ETSI Industriales José Gutiérrez Abascal, 2 28006 Madrid (España)

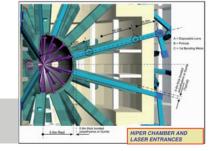
Tel.: +34 91 336 3108/09/10 Fax: +34 91 336 3002 nuria@denim.upm.es elena@denim.upm.es www.denim.upm.es

LÍNEAS DE INVESTIGACIÓN



FUSIÓN NUCLEAR INERCIAL

Hidrodinámica y Radiación: desarrollo de Modelos y Experimentos de Física de Alta Densidad de Energía y Astrofísica

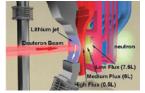

Física atómica: Reproducción computacional con el código LTNEP de experimentos realizados en LULI (E. Dalimier, 2005) de las líneas de absorción en un plasma homogéneo observando un muy buen acuerdo entre ambos.

Diseño de blancos: Uno de los primeros diseños realizados (2002) con el código 2D ARWEN, de un blanco de Fusión por Ignición Ràpida por jets con un solo haz láser de iluminación.

FUENTES DE ILUMINACIÓN MUY INTENSAS

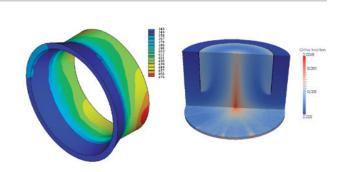
Láseres de femto y attosegundos Aplicaciones a visualización en estado sólido y biología

DISEÑO DE REACTORES DE FUSIÓN POR LÁSER MEDIANTE LA IGNICIÓN RÁPIDA, HIPER


TECNOLOGÍA DE FUSIÓN

Activación y Seguridad: Estudio del *International Fusion Material Irradiation Facility* (IFMIF) dentro del desarrollo del programa de acompañamiento de ITER.

Materiales: Simulación computacional multiescala y experimentos bajo irradiación de materiales avanzados basados en nanoestructuras. Se estudian tanto aquellos de naturaleza estructural como nuevas ópticas e irradiación iónica y Rayos X generando altas temperaturas y tensiones mecánicas.


Envolturas reproductoras y Sistemas de planta

FUENTE NEUTRÓNICA POR ESPALACIÓN, TRANSMUTACIÓN DE RESIDUOS RADIACTIVOS, REACTORES HÍBRIDOS Y AVANZADOS DE FISIÓN

Fuentes de Neutrones: Contribución al proyecto de la Fuente Europea de Espalación (ESS), y a la subsede española (ESS-Bilbao). Diseño de blanco, moderadores, refrigeración, Beam Dump. En las imágenes, cálculos térmicos del Beam Dump, y cálculos de acumulación por irradiación de ortohidrógeno en el moderador criogénico.

